An effective bandwidth selection method for local linear regression is proposed in Fan and Gijbels [1995, J. Roy. Statist. Soc. Ser. B, 57, 371394]. The method is based on the idea of the pre-asymptotic substitution and has been tested extensively. This paper investigates the rate of convergence of this method. In particular, we show that the relative rate of convergence is of order <i>n</i><sup>2/7</sup> if the locally cubic fitting is used in the pilot stage, and the rate of convergence is <i>n</i><sup>2/5</sup> when the local polynomial of degree 5 is used in the pilot fitting. The study also reveals a marked difference between the bandwidth selection for nonparametric regression and that for density estimation: The plug-in approach for the latter case can admit the root-<i>n</i> rate of convergence while for the former case the best rate is of order <i>n</i><sup>2/5</sup>.