1
Chan K, Lau S, Leung N C, et al. SYZ mirror symmetry for toric Calabi-Yau manifolds[J]. Journal of Differential Geometry, 2010, 90(2): 177-250.
2
Kwokwai Chan · Siucheong Lau · Hsianhua Tseng. Enumerative meaning of mirror maps for toric Calabi-Yau manifolds. 2011.
3
Lau S, Leung N C, Wu B, et al. Mirror maps equal SYZ maps for toric Calabi–Yau surfaces[J]. Bulletin of The London Mathematical Society, 2010, 44(2): 255-270.
4
Chan K, Cho C, Lau S, et al. Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds[J]. Communications in Mathematical Physics, 2012, 328(1): 83-130.
5
Chan K, Cho C, Lau S, et al. Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds[J]. Journal of Differential Geometry, 2013, 103(2): 207-288.
6
Chan K, Lau S. Open Gromov-Witten invariants and superpotentials for semi-Fano toric surfaces[J]. International Mathematics Research Notices, 2010, 2014(14): 3759-3789.
7
Chan K, Lau S, Leung N C, et al. Open Gromov-Witten invariants, mirror maps, and Seidel representations for toric manifolds[C]., 2012.
8
Chan K, Cho C, Lau S, et al. Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds[J]. Communications in Mathematical Physics, 2012, 328(1): 83-130.
9
Siucheong Lau. TORIC, GLOBAL, AND GENERALIZED SYZ. 2013.