We consider the mixed q-Gaussian algebras introduced by Speicher which are generated by the variables Xi = li + l ∗ i , i = 1, . . . , N, where l ∗ i lj − qij lj l ∗ i = δi,j and −1 < qij = qji < 1. Using the free monotone transport theorem of Guionnet and Shlyakhtenko, we show that the mixed q-Gaussian von Neumann algebras are isomorphic to the free group von Neumann algebra L(FN ), provided that maxi,j |qij | is small enough. Similar results hold in the reduced C ∗ -algebra setting. The proof relies on some estimates which are generalizations of Dabrowski’s results for the special case qij ≡ q.