Given positive integers$n$_{1}<$n$_{2}<... we show that the Hardy-type inequality $$\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$$ holds true for all$f$∈$H$^{1}, provided that the$n$_{$k$}'s, satisfy an appropriate (and indispensable) regularity condition. On the other hand, we exhibit inifinite-dimensional subspaces of$H$^{1}for whose elements the above inequality is always valid, no additional hypotheses being imposed. In conclusion, we extend a result of Douglas, Shapiro and Shields on the cyclicity of lacunary series for the backward shift operator.