Schmidt W M. THE ZERO MULTIPLICITY OF LINEAR RECURRENCE SEQUENCES[J]. Acta Mathematica, 1999, 182(2): 243-282.
2
Schlickewei H P, Schmidt W M. On polynomial-exponential equations[J]. Mathematische Annalen, 1993, 296(1): 339-361.
3
Hans Peter Schlickewei. Multiplicities of recurrence sequences. 1996.
4
Schlickewei H P, Schmidt W M. The intersection of recurrence sequences[J]. Acta Arithmetica, 1995, 72(1): 1-44.
5
Schlickewei H P, Schmidt W M. On polynomial-exponential equations[J]. Mathematische Annalen, 1993, 296(1): 339-361.
6
E Bavencoffe · Jeanpaul Bezivin. Une famille remarquable de suites recurrentes lineaires. 1995.
7
Schlickewei H P, Schmidt W M. Equations ^{}_{}=^{}_{} satisfied by members of recurrence sequences[J]. Proceedings of the American Mathematical Society, 1993, 118(4): 1043-1051.
8
Schlickewei H P, Schmidt W M. On polynomial-exponential equations[J]. Mathematische Annalen, 1993, 296(1): 339-361.
9
E Bavencoffe · Jeanpaul Bzivin. Une famille remarquable de suites recurrentes lineaires@@@A remarquable family of recurrent sequences. 1995.
Smale S. Differentiable dynamical systems[J]. Bulletin of the American Mathematical Society, 1967, 73(6): 747-817.
2
Moon F C, Holmes P. A magnetoelastic strange attractor[J]. Journal of Sound and Vibration, 1979, 65(2): 275-296.
3
Rossler O E. CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS[J]. Annals of the New York Academy of Sciences, 1979, 316(1): 376-392.
4
Morris W Hirsch. The dynamical systems approach to differential equations. 1984.
5
Roberts J A, Quispel G R. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems[J]. Physics Reports, 1992: 63-177.
6
Luo A C. Singularity and dynamics on discontinuous vector fields[C]., 2006.
7
Siegelmann H T, Fishman S. Analog computation with dynamical systems[J]. Physica D: Nonlinear Phenomena, 1998, 120(1): 214-235.
8
Howard J E, Humpherys J. Nonmonotonic twist maps[J]. Physica D: Nonlinear Phenomena, 1995, 80(3): 256-276.
9
Luo A C. The mapping dynamics of periodic motions for a three- piecewise linear system under a periodic excitation[J]. Journal of Sound and Vibration, 2005, 283(3): 723-748.
10
Mackay R S, Meiss J D. Linear stability of periodic orbits in lagrangian systems[J]. Physics Letters A, 1983, 98(3): 92-94.
We prove the Poincaré inequality for vector fields on the balls of the control distance by integrating along subunit paths. Our method requires that the balls are representable by means of suitable “controllable almost exponential maps”.
Odlyzko A. Asymptotic enumeration methods[C]., 1996: 1063-1229.
2
Wimp J, Zeilberger D. Resurrecting the asymptotics of linear recurrences[J]. Journal of Mathematical Analysis and Applications, 1985, 111(1): 162-176.
3
Abramov S A, Barkatou M A. Rational solutions of first order linear difference systems[C]. international symposium on symbolic and algebraic computation, 1998: 124-131.
4
Wong R, Li H. Asymptotic expansions for second-order linear difference equations[J]. Journal of Computational and Applied Mathematics, 1992: 65-94.
5
Barkatou M A. Rational solutions of matrix difference equations: the problem of equivalence and factorization[C]. international symposium on symbolic and algebraic computation, 1999: 277-282.
6
Mallik R K. Solutions of linear difference equations with variable coefficients[J]. Journal of Mathematical Analysis and Applications, 1998, 222(1): 79-91.
7
Cluzeau T, Van Hoeij M. Computing Hypergeometric Solutions of Linear Recurrence Equations[J]. Applicable Algebra in Engineering, Communication and Computing, 2006, 17(2): 83-115.
8
Morse M. George David Birkhoff and his mathematical work[J]. Bulletin of the American Mathematical Society, 1946, 52(5): 357-391.
9
Wang Z, Wong R. Linear difference equations with transition points[J]. Mathematics of Computation, 2005, 74(250): 629-653.
10
Wong R, Li H. Asymptotic Expansions for Second‐Order Linear Difference Equations, II[J]. Studies in Applied Mathematics, 1992, 87(4): 289-324.