We prove the Poincaré inequality for vector fields on the balls of the control distance by integrating along subunit paths. Our method requires that the balls are representable by means of suitable “controllable almost exponential maps”.
Rickman S. On the number of omitted values of entire quasiregular mappings[J]. Journal D Analyse Mathematique, 1980, 37(1): 100-117.
2
Rickman S. The analogue of Picard\u0027s theorem for quasiregular mappings in dimension three[J]. Acta Mathematica, 1985: 195-242.
3
Bonk M, Heinonen J. Quasiregular mapping and cohomology[J]. Acta Mathematica, 2001, 186(2): 219-238.
4
Seppo Rickman. Quasiregular mappings and metrics on then-sphere with punctures. 1984.
5
Bergweiler W. Fatou–Julia theory for non-uniformly quasiregular maps[J]. Ergodic Theory and Dynamical Systems, 2011, 33(01): 1-23.
6
Rickman S. Value distribution of quasiregular mappings[C]., 1983: 220-245.
7
Bergweiler W, Nicks D A. Foundations for an iteration theory of entire quasiregular maps[J]. Israel Journal of Mathematics, 2012, 201(1): 147-184.
8
Pankka P. Quasiregular mappings from a punctured ball into compact manifolds[J]. Conformal Geometry and Dynamics of The American Mathematical Society, 2006, 10(3): 41-62.
9
Rickman S. Picard’s theorem and defect relation for quasiregular mappings[C]., 1992: 93-103.
10
Onninen J, Pankka P. Slow mappings of finite distortion[J]. Mathematische Annalen, 2011, 354(2): 685-705.
Smale S. Differentiable dynamical systems[J]. Bulletin of the American Mathematical Society, 1967, 73(6): 747-817.
2
Moon F C, Holmes P. A magnetoelastic strange attractor[J]. Journal of Sound and Vibration, 1979, 65(2): 275-296.
3
Rossler O E. CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS[J]. Annals of the New York Academy of Sciences, 1979, 316(1): 376-392.
4
Morris W Hirsch. The dynamical systems approach to differential equations. 1984.
5
Roberts J A, Quispel G R. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems[J]. Physics Reports, 1992: 63-177.
6
Luo A C. Singularity and dynamics on discontinuous vector fields[C]., 2006.
7
Siegelmann H T, Fishman S. Analog computation with dynamical systems[J]. Physica D: Nonlinear Phenomena, 1998, 120(1): 214-235.
8
Howard J E, Humpherys J. Nonmonotonic twist maps[J]. Physica D: Nonlinear Phenomena, 1995, 80(3): 256-276.
9
Luo A C. The mapping dynamics of periodic motions for a three- piecewise linear system under a periodic excitation[J]. Journal of Sound and Vibration, 2005, 283(3): 723-748.
10
Mackay R S, Meiss J D. Linear stability of periodic orbits in lagrangian systems[J]. Physics Letters A, 1983, 98(3): 92-94.