1
Jayne J E, Rogers C A. Borel selectors for upper semi-continuous set-valued maps[J]. Acta Mathematica, 1985, 155(1): 41-79.
2
Srivatsa V V. Baire class 1 selectors for upper semicontinuous set-valued maps[J]. Transactions of the American Mathematical Society, 1993, 337(2): 609-624.
3
Cascales B, Orihuela J. A sequential property of set-valued maps[J]. Journal of Mathematical Analysis and Applications, 1991, 156(1): 86-100.
4
J E Jayne · C A Rogers. Borel selectors for upper semi-continuous multi-valued functions. 1984.
5
Jayne J E, Rogers C A. Borel selectors for upper semi-continuous multi-valued functions[J]. Journal of Functional Analysis, 1984, 56(3): 279-299.
6
Raymond J S. Riemann-measurable selections[J]. Set-valued Analysis, 1994, 2(3): 481-485.
7
Gutev V, Nedev S, Pelant J, et al. Cantor set selectors[J]. Topology and its Applications, 1992: 163-166.
8
Hansell R W. First class selectors for upper semi-continuous multifunctions[J]. Journal of Functional Analysis, 1987, 75(2): 382-395.
9
Hansell R W. Sums, products and continuity of Borel maps in nonseparable metric spaces[J]. Proceedings of the American Mathematical Society, 1988, 104(2): 465-471.
10
Iwo Labuda. On a theorem of Choquet and Dolecki. 1987.