Given a smooth projective variety X and a smooth divisor D\subset X. We study relative Gromov-Witten invariants of (X,D) and the corresponding orbifold Gromov-Witten invariants of the r-th root stack X_{D,r}. For sufficiently large r, we prove that orbifold Gromov- Witten invariants of X_{D,r} are polynomials in r. Moreover, higher genus relative Gromov-Witten invariants of (X,D) are exactly the constant terms of the corresponding higher genus orbifold Gromov-Witten invari- ants of X_{D,r}. We also provide a new proof for the equality between genus zero relative and orbifold Gromov-Witten invariants, originally proved by Abramovich-Cadman-Wise. When r is sufficiently large and X=C is a curve, we prove that stationary relative invariants of C are equal to the stationary orbifold invariants in all genera.