In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed Hermitian-Yang-Mills bundles over complex submanifolds in Calabi-Yau manifolds.
These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror Calabi-Yau manifold is such a moduli space and they argue that the mirror symmetry duality is a Fourier-Mukai transformation. We review various aspects of the mirror symmetry conjecture and discuss a geometric approach in proving it.
The existence of rigid Calabi-Yau manifolds poses a serious challenge to the conjecture. The proposed mirror partners for them are higher dimensional generalized Calabi-Yau manifolds. For example, the mirror partner for a certain K3 surface is a cubic fourfold and its Fano variety of lines is birational to the Hilbert scheme of two points on the K3. This hyperk¨ahler manifold can be interpreted as the SYZ mirror of the K3 by considering singular special Lagrangian tori.
We also compare the geometries between a CY and its associated generalized CY. In particular we present a new construction of Lagrangian submanifolds.