The circular law asserts that the spectral measure of eigenvalues of rescaled random matrices without symmetry assumption converges to the uniform measure on the unit disk. We prove a local version of this law at any point z away from the unit circle. More precisely, if ||z|−1|≥τ for arbitrarily small τ>0, the circular law is valid around z up to scale $N^{-1/2+ \e}$ for any $\e > 0$ under the assumption that the distributions of the matrix entries satisfy a uniform subexponential decay condition.