Yuan-Pin LeeDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112R. VakilDepartment of Mathematics, Stanford University, Stanford (Palo Alto), CA 94305
We discuss selected topics on the topology of moduli spaces of curves and maps, emphasizing their relation with Gromov--Witten theory and integrable systems.
Yuan-Pin LeeDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112R. PandharipandeDepartment of Mathematics, Princeton University, Princeton, New Jersey, 08540
The double point relation defines a natural theory of algebraic cobordism for bundles on varieties. We construct a simple basis (over the rationals) of the corresponding cobordism groups over Spec(C) for all dimensions of varieties and ranks of bundles. The basis consists of split bundles over products of projective spaces. Moreover, we prove the full theory for bundles on varieties is an extension of scalars of standard algebraic cobordism.
Yuan-Pin LeeDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112Hui-Wen LinTaida Institute of Mathematical Sciences (TIMS), National Taiwan University, Taipei 106Chin-Lung WangCenter for Advanced Study in Theoretical Sciences, National Taiwan University, Taipei 106
This is the first of a sequence of papers proving the quantum invariance under ordinary flops over an arbitrary smooth base.
In this first part, we determine the defect of the cup product under the canonical correspondence and show that it is corrected by the small quantum product attached to the extremal ray. We then perform various reductions to reduce the problem to the local models.
In Part II, we develop a quantum Leray--Hirsch theorem and use it to show that the big quantum cohomology ring is invariant under analytic continuations in the Kähler moduli space for ordinary flops of splitting type. In Part III, together with F. Qu, we remove the splitting condition by developing a quantum splitting principle, and hence solve the problem completely.
Yuan-Pin LeeDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112Mark ShoemakerDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112
The celebrated Mirror Theorem states that the genus zero part of the A model (quantum cohomology, rational curves counting) of the Fermat quintic threefold is equivalent to the B model (complex deformation, variation of Hodge structure) of its mirror dual orbifold.
In this article, we establish a mirror-dual statement. Namely, the B model of the Fermat quintic threefold is shown to be equivalent to the A model of its mirror, and hence establishes the mirror symmetry as a true duality.
Yuan-Pin LeeDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112Feng QuDepartment of Mathematics, University of Utah, Salt Lake City, Utah, 84112
We give an effective algorithm to compute the Euler characteristics χ(\mbar_{1,n}, \otimes_{i=1}^n L_i^{d_i}). In addition, we give a simple proof of Pandharipande's vanishing theorem H^j (\mbar_{0,n}, \otimes_{i=1}^n L_i^{d_i})=0 for j≥1,di≥0.