Suppose<i>X</i>and<i>Y</i>are locally compact Hausdorff spaces,<i>E</i>and<i>F</i>are Banach spaces, and<i>F</i>is strictly convex. We show that every linear isometry<i>T</i>from<i>C</i><sub>0</sub>(<i>X</i>,<i>E</i>)<i>into</i><i>C</i><sub>0</sub>(<i>Y</i>,<i>F</i>) is essentially a weighted composition operator<i>Tf</i>(<i>y</i>)=<i>h</i>(<i>y</i>)(<i>f</i>((<i>y</i>))).