We exhibit a transformation taking special Lagrangian submanifolds of a Calabi-Yau together with local systems to vector bundles over the mirror manifold with connections obeying deformed Hermitian-Yang-Mills equations. That is, the transformation relates supersymmetric A- and Bcycles. In this paper, we assume that the mirror pair are dual torus fibrations with flat tori and that the A-cycle is a section.
We also show that this transformation preserves the (holomorphic) Chern-Simons functional for all connections. Furthermore, on corresponding moduli spaces of supersymmetric cycles it identifies the graded tangent spaces and the holomorphic m-forms. In particular, we verify Vafa’s mirror conjecture with bundles in this special case.