Proofs are given of two theorems of Berezin and Karpelevič, which as far as we know never have been proved correctly. By using eigenfunctions of the Laplace-Beltrami operator it is shown that the spherical functions on a complex Grassmann manifold are given by a determinant of certain hypergeometric functions. By application of this result, it is proved that a certain system of operators, fow which explicit expressions are given, generates the algebra of radial parts of invariant differential operators.