Maskit B. On Klein’s combination theorem[J]. Transactions of the American Mathematical Society, 1993, 336(1): 265-294.
2
Abikoff W. On The Decomposition and Deformation of Kleinian Groups[C]., 1974: 1-10.
3
William Abikoff. On boundaries of teichmüller spaces and on kleinian groups, III. 1975.
4
Ng T W, Zheng J H, Choi Y Y, et al. Residual Julia Sets of Meromorphic Functions[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2006, 141(01): 113-126.
5
Abikoff W. On The Decomposition and Deformation of Kleinian Groups[C]., 1974: 1-10.
6
Maskit B. Panelled web groups[C]., 1983: 79-108.
7
Dominguez P. Residual Julia sets for meromorphic functions with countably many essential singularities[J]. Journal of Difference Equations and Applications, 2010: 519-522.
8
Fraser J. An Introduction to Julia Sets[C]., 2009.
9
Bers L. What is a Kleinian group[C]., 1974: 1-14.
10
Sasaki T. THE RESIDUAL LIMIT POINTS OF THE FIRST KIND AND THE NEST GROUPS[J]. Tohoku Mathematical Journal, 1980, 32(1): 35-48.
Giga Y, Sohr H. Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains[C]., 1989.
2
Bellout H, Bloom F, Necas J, et al. Young Measure‐Valued Solutions for Non-Newtonian Incompressible Fluids1[J]. Communications in Partial Differential Equations, 2007: 1763-1803.
3
M A Rojasmedar. Magneto - Micropolar Fluid Motion: Existence and Uniqueness of Strong Solution. 1997.
4
Chae D, Lee J. Regularity criterion in terms of pressure for the Navier-Stokes equations[J]. Nonlinear Analysis-theory Methods \u0026 Applications, 2001, 46(5): 727-735.
5
Hamid Bellout · Jiři Neustupa · Patrick Penel. On the Navier‐Stokes equation with boundary conditions based on vorticity. 2004.
6
Temam R. Some Developments on Navier-Stokes Equations in the Second Half of the 20th Century[C]., 2000: 1049-1106.
7
Tao T. Localisation and compactness properties of the Navier-Stokes global regularity problem[J]. Analysis \u0026 PDE, 2011, 6(1): 25-107.
8
Jiři Neustupa · Patrick Penel. On regularity of a weak solution to the Navier-Stokes equation with generalized impermeability boundary conditions. 2007.
9
Choi K, Vasseur A. Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations[J]. Annales De L Institut Henri Poincare-analyse Non Lineaire, 2011, 31(5): 899-945.
10
Hamid Bellout · Frederick Bloom. General Existence and Uniqueness Theorems for Incompressible Bipolar and Non-Newtonian Fluid Flow. 2014.
We establish local higher integrability estimates for upper gradients of vector-valued parabolic quasi-minimizers in metric measure spaces, satisfying a doubling property and supporting a weak Poincaré inequality.