Henryk Iwaniec. Almost-Primes Represented by Quadratic Polynomials.. 1978.
2
Tolev D I. On a theorem of Bombieri-Vinogradov type for prime numbers from a thin set[J]. Acta Arithmetica, 1997, 81(1): 57-68.
3
Friedlander J B, Lagarias J C. On the distribution in short intervals of integers having no large prime factor[J]. Journal of Number Theory, 1987, 25(3): 249-273.
4
Baier S, Zhao L. On primes in quadratic progressions[J]. International Journal of Number Theory, 2007, 05(06): 1017-1035.
5
Baier S, Zhao L. On Primes Represented by Quadratic Polynomials[C]., 2007.
6
Friedlander J B. Producing Prime Numbers via Sieve Methods[C]., 2006: 1-49.
7
Jacek Pomyka. CUBIC NORMS REPRESENTED BY QUADRATIC SEQUENCES. 1993.
8
John B Friedlander · Igor E Shparlinski. Enumeration of certain varieties over a finite field. 2014.
9
Jacek Pomykala. Cubic norms represented by quadratic sequences. 1993.
10
Liangyi Zhao. Title On primes in quadratic progressions. 2008.
Agmon S, Nirenberg L. Properties of solutions of ordinary differential equations in banach space[J]. Communications on Pure and Applied Mathematics, 1963, 16(2): 121-239.
2
Kaplan S. On the growth of solutions of quasi‐linear parabolic equations[J]. Communications on Pure and Applied Mathematics, 1963, 16(3): 305-330.
3
Paul Fife. Solutions of parabolic boundary problems existing for all time. 1964.
4
Denisov V N. On the behaviour of solutions of parabolic equations for large values of time[J]. Russian Mathematical Surveys, 2005, 60(4): 721-790.
5
R S Anderssen. The character of non-uniqueness in the conductivity modelling problem for the earth. 1970.
6
Arosio A. Asymptotic behaviour as of solutions of linear parabolic equations with discontinuous coefficients in[J]. Communications in Partial Differential Equations, 1979, 4(7): 769-794.
7
Gekeler E. Long-Range and Periodic Solutions of Parabolic Problems[J]. Mathematische Zeitschrift, 1973, 134(1): 53-66.
8
Ilyin A M, Kalashnikov A S, Oleynik O A, et al. Linear Second-Order Partial Differential Equations of the Parabolic Type[J]. Journal of Mathematical Sciences, 2002.
9
Pazy A. Asymptotic behavior of the solution of an abstract evolution equation and some applications[J]. Journal of Differential Equations, 1968, 4(4): 493-509.
10
Ju N Ceremnyh. THE BEHAVIOR OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR SECOND ORDER PARABOLIC EQUATIONS AS t GROWS WITHOUT BOUND. 1968.
Demailly J. Analytic Methods in Algebraic Geometry[C]., 2011.
2
Siu Y. A General Non-Vanishing Theorem and an Analytic Proof of the Finite Generation of the Canonical Ring[C]., 2006.
3
Varolin D. A Takayama-type extension theorem[J]. Compositio Mathematica, 2006, 144(02): 522-540.
4
Jeanpierre Demailly · Christopher D Hacon · Mihai Paun. Extension theorems, Non-vanishing and the existence of good minimal models. 2010.
5
Paun M. Relative critical exponents, non-vanishing and metrics with minimal singularities[J]. Inventiones Mathematicae, 2008, 187(1): 195-258.
6
Siu Y. Finite Generation of Canonical Ring by Analytic Method[J]. Science China-mathematics, 2008, 51(4): 481-502.
7
Guan Q, Zhou X. A solution of an $L^{2}$ extension problem with optimal estimate and applications[J]. Annals of Mathematics, 2013, 181(3): 1139-1208.
8
Pacienza G. On the uniformity of the Iitaka fibration[J]. Mathematical Research Letters, 2007, 16(4): 663-682.
9
Demailly J. Kähler manifolds and transcendental techniques in algebraic geometry[C]., 2006: 153-186.
10
Kim D. L^2 extension of adjoint line bundle sections@@@Extension L^2 des sections du fibré en droite ajdoint[J]. Annales de l\u0027Institut Fourier, 2010, 60(4): 1435-1477.
In this article our main goal is to establish an L2 version of the twisted invariance of plurigenera. We equally simplify the original “two towers” approach of Yum-Tong Siu.