Chun-Lei CaoInstitute of Mathematics Academy of Mathematics and System Sciences, Chinese Academy of SciencesYue-Fei WangInstitute of Mathematics Academy of Mathematics and System Sciences, Chinese Academy of Sciences
Completely invariant components of the Fatou sets of meromorphic maps are discussed. Positive answers are given to Baker’s and Bergweiler’s problems that such components are the only Fatou components for certain classes of meromorphic maps.
High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observable and the number of factors K is allowed to grow with p. We investigate the impact of p and K on the performance of the model-based covariance matrix estimator. Under mild assumptions, we have established convergence rates and asymptotic normality of the model-based estimator. Its performance is compared with that of the sample covariance matrix. We identify situations under which the factor approach increases performance substantially or marginally. The impacts of covariance matrix estimation on optimal
Let Ω⊂$R$^{$n$}be an arbitrary open set. In this paper it is shown that if a Sobolev function$f$∈$W$^{1,$p$}(Ω) possesses a zero trace (in the sense of Lebesgue points) on ϖΩ, then$f$is weakly zero on ϖΩ in the sense that$f$∈$W$_{0}^{1,$p$}(Ω).