We set up a framework to study one-dimensional heat equations defined by fractal Laplacians associated with self-similar measures with overlaps. We show that for a class of such self-similar measures, a heat equation can be discretized and the finite element method can be applied to yield a system of linear differential equations. We show that the numerical solutions converge to the actual solution and obtain the rate of convergence. We also study some properties of the solutions of the heat equation.
We prove that weak solutions to the obstacle problem for the porous medium
equation are locally Hölder continuous, provided that the obstacle is Hölder continuous.
We extend our family rigidity and vanishing theorems in [{\bf LiuMaZ}] to the Spin^ c case. In particular, we prove a K-theory version of the main results of [{\bf H}],[{\bf Liu1}, Theorem B] for a family of almost complex manifolds.