The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.
We extend our family rigidity and vanishing theorems in [{\bf LiuMaZ}] to the Spin^ c case. In particular, we prove a K-theory version of the main results of [{\bf H}],[{\bf Liu1}, Theorem B] for a family of almost complex manifolds.
Spencer D C. Overdetermined systems of linear partial differential equations[J]. Bulletin of the American Mathematical Society, 1969, 75(2): 179-239.
2
J J Kohn. Subellipticity of the $$\bar \partial$$ -Neumann problem on pseudo-convex domains: Sufficient conditionsproblem on pseudo-convex domains: Sufficient conditions. 1979.
3
Folland G B. The tangential Cauchy-Riemann complex on spheres[J]. Transactions of the American Mathematical Society, 1972: 83-133.
4
Golubitsky O, Kondratieva M V, Ovchinnikov A, et al. A Bound for Orders in Differential Nullstellensatz[J]. Journal of Algebra, 2008, 322(11): 3852-3877.
5
Munoz J, Muriel F, Rodriguez J C, et al. A remark on Goldschmidt\u0027s theorem on formal integrability[J]. Journal of Mathematical Analysis and Applications, 2001, 254(1): 275-290.
6
Makhlouf Derridj. Ingalits priori et estimation sous-elliptique pour $$\bar \partial $$ dans des ouverts non pseudoconvexes. 1980.
7
W J Sweeney. A condition for subellipticity in Spencer's Neumann problem. 1976.
8
Mackichan B. A generalization to overdetermined systems of the notion of diagonal operators[J]. Acta Mathematica, 1971.
9
Derridj M. Domaines a estimation maximale[J]. Mathematische Zeitschrift, 1991, 208(1): 92-100.
10
Samborskii S N. Coercive boundary-value problems for overdetermined systems (parabolic problems)[J]. Ukrainian Mathematical Journal, 1985, 36(4): 385-390.