Let A be a C*-algebra, L a closed left ideal of A and p the closed projection related to L. We show that for an xp in A**p ( A**/L**) if pAxp pAp and px*xp pAp then xp Ap ( A/L). The proof goes by interpreting elements of A**p (resp. Ap) as admissible (resp. continuous admissible) vector sections over the base space F(p) = { A* : 0, (p) = 1} in the notions developed by Diximier and Douady, Fell, and Tomita. We consider that our results complement both Kadison function representation and Takesaki duality theorem.