Gaposhkin V F. LACUNARY SERIES AND INDEPENDENT FUNCTIONS[J]. Russian Mathematical Surveys, 1966, 21(6): 1-82.
2
Kahane J. Lacunary Taylor and Fourier series[J]. Bulletin of the American Mathematical Society, 1964, 70(2): 199-213.
3
Kahane J P, Weiss M, Weiss G, et al. On lacunary power series[J]. Arkiv för Matematik, 1963: 1-26.
4
Kahane J. Gecza Freud and lacunary Fourier series[J]. Journal of Approximation Theory, 1986, 46(1): 51-57.
5
Graham C C, Hare K E. Sets of Zero Discrete Harmonic Density[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2013, 148(02): 175-186.
6
Murai T. The boundary behaviour of Hadamard lacunary series[J]. Nagoya Mathematical Journal, 1983: 65-76.
7
Murai T. On lacunary series[J]. Nagoya Mathematical Journal, 1982: 87-154.
8
Douglas M Campbell · Ronald J Leach. A survey of Hp multipliers as related to classical function theory. 1984.
9
Wu J. Dimension of level sets of some Rademacher series[J]. Comptes Rendus De L Academie Des Sciences Serie I-mathematique, 1998, 327(1): 29-33.
10
Schaeffer A C. Power series and Peano curves[J]. Duke Mathematical Journal, 1954, 21(2): 383-389.
We introduce a non-linear injective transformation τ from the set of non-vanishing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences by the formula$T$[($a$_{$n$})_{$n$=1}^{∞}]_{$n$}= 1/$a$_{1}...$a$_{$n$}. Special cases of this transformation have appeared in various papers on exponential functionals of Lévy processes, partly motivated by mathematical finance. We give several examples of moment sequences arising from the transformation and provide the corresponding measures, some of which are related to$q$-series.
We study stable curves of arithmetic genus 2 which admit two morphisms of finite degree d, resp. (d,d′), onto smooth elliptic curves, with particular attention to the case d prime.
Crowdy D, Marshall J. Conformal Mappings between Canonical Multiply Connected Domains[J]. Computational Methods and Function Theory, 2013, 6(1): 59-76.
2
Crowdy D. Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2007, 142(02): 319-339.
3
Darren Crowdy. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains. 2005.
4
Grauert H, Remmert R. Extension of Analytic Objects[C]., 1994: 351-360.
5
Duren P, Kuhnau R. Elliptic capacity and its distortion under conformal mapping[J]. Journal D Analyse Mathematique, 2003, 89(1): 317-335.
6
Smets D, Van Schaftingen J. Desingularization of vortices for the Euler equation[J]. Archive for Rational Mechanics and Analysis, 2010, 198(3): 869-925.
7
Crowdy D. Genus-N algebraic reductions of the Benney hierarchy within a Schottky model[J]. Journal of Physics A, 2005, 38(50): 10917-10934.
8
Filho M C, Lopes H. Vortex dynamics on a domain with holes[J]. Theoretical and Computational Fluid Dynamics, 2010, 24(1): 51-57.
9
Mohamed M S Nasser · Jorg Liesen · Olivier Sete. Numerical computation of the conformal map onto lemniscatic domains. 2015.
10
Andreev V V, Mcnicholl T H. Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains[J]. Theory of Computing Systems \\/ Mathematical Systems Theory, 2012, 50(2): 354-369.
Hayman W K. ANGULAR VALUE DISTRIBUTION OF POWER SERIES WITH GAPS[J]. Proceedings of The London Mathematical Society, 1972: 590-624.
2
Li P, Yang C. On the unique range set of meromorphic functions[J]. Proceedings of the American Mathematical Society, 1996, 124(1): 177-185.
3
Fuglede B. Asymptotic paths for subharmonic functions[J]. Mathematische Annalen, 1975, 213(3): 261-274.
4
Lewis J L, Rossi J, Weitsman A, et al. On the growth of subharmonic functions along paths[J]. Arkiv för Matematik, 1984: 109-119.
5
Chiang Y, Hayman W K. Estimates on the growth of meromorphic solutions of linear differential equations[J]. Commentarii Mathematici Helvetici, 2004, 79(3): 451-470.
6
Nozomu Mochizuki. Algebras of holomorphic functions between ^{} and _{*}. 1989.
7
Chyzhykov I, Heittokangas J, Rattya J, et al. Finiteness of φ-order of solutions of linear differential equations in the unit disc[J]. Journal D Analyse Mathematique, 2010, 109(1): 163-198.
8
Heittokangas J. A Survey on Blaschke-Oscillatory Differential Equations, with Updates[C]., 2013: 43-98.
9
Hinkkanen A. On functions of bounded type[J]. Complex Variables and Elliptic Equations, 2007, 34(1): 119-139.
10
Choe B R, Koo H, Smith W, et al. Carleson measures for the area Nevanlinna spaces and applications[J]. Journal D Analyse Mathematique, 2008, 104(1): 207-233.