Pascal J. ThomasLaboratoire Emile Picard UMR CNRS 5580, Université Paul SabatierNguyen Van TraoDepartment of Mathematics, Dai Hoc Su Pham 1 (Pedagogical Institute of Hanoi
We show that if$E$is a complex Banach space which contains no subspace isomorphic to$l$_{1}, then each infinite dimensional subspace of$E′$contains a normalized sequence which converges to zero for the weak star topology.