1
Wooley T D. Vinogradov\u0027s mean value theorem via efficient congruencing[J]. Annals of Mathematics, 2011, 175(3): 1575-1627.
2
Wooley T D. Breaking classical convexity in Waring\u0027s problem: Sums of cubes and quasi-diagonal behaviour[J]. Inventiones Mathematicae, 1995, 122(3): 421-451.
3
胡琴. 基于标记点的三维人体步态捕获技术研究[C]., 2008.
4
Wooley T D. Vinogradov\u0027s mean value theorem via efficient congruencing[J]. Annals of Mathematics, 2011, 175(3): 1575-1627.
5
Heathbrown D R. The circle method and diagonal cubic forms[J]. Philosophical Transactions of the Royal Society A, 1998, 356(1738): 673-699.
6
Brudern J, Wooley T D. ON WARING\u0027S PROBLEM FOR CUBES AND SMOOTH WEYL SUMS[J]. Proceedings of The London Mathematical Society, 2001, 82(1): 89-109.
7
Brudern J, Kawada K, Wooley T D, et al. Additive representation in thin sequences, I: Waring\u0027s problem for cubes[J]. Annales Scientifiques De L Ecole Normale Superieure, 2001, 34(4): 471-501.
8
Brudern J. A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem[J]. Acta Arithmetica, 1995, 72(3): 211-227.
9
Wooley T D. Multigrade efficient congruencing and Vinogradov\u0027s mean value theorem[J]. Proceedings of The London Mathematical Society, 2013, 111(3): 519-560.
10
Bruedern J, Wooley T D. The Hasse principle for pairs of diagonal cubic forms[J]. Annals of Mathematics, 2007, 166(3): 865-895.