For any smooth Riemannian metric on an (n+1)-dimensional compact manifold with boundary (M,∂M) where 3≤(n+1)≤7, we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min-max theory in the Almgren-Pitts setting. We apply our Morse index estimates to prove that for almost every (in the C-infinity Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in M. If ∂M is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting.