For a one parameter family of Calabi-Yau threefolds, Green et al. (2009) expressed the total singularities in terms of the degrees of Hodge bundles and Euler number of the general fiber. In this paper, we show that the total singularities can be expressed by the sum of asymptotic values of BCOV (Bershadsky-Cecotti-Ooguri-Vafa) invariants, studied by Fang et al. (2008). On the other hand, by using Yau's Schwarz lemma, we prove Arakelov type inequalities and Euler number bound for Calabi-Yau family over a compact Riemann surface.