We prove, in the setting of a measure energy space (M, ,(, )), that if the smallest eigenvalue 1 () of the generator of the Dirichlet form in any precompact open set M admits the estimate 1 () ()- where is a measure absolutely continuous with respect to and > 0 then a similar estimate holds for the kth smallest eigenvalue: k () const (k/ ()) . As an application, we obtain an upper estimate of the stability index of a minimal surface in [inline-graphic xmlns: xlink=" http://www. w3. org/1999/xlink" xlink: href=" 01i"/] via the total curvature.