In this paper, we show that any compact Kähler manifold homotopic to a compact Riemannian manifold with negative sectional curvature admits a Kähler–Einstein metric of general type. Moreover, we prove that, on a compact symplectic manifold X homotopic to a compact Riemannian manifold with negative sectional curvature, for any almost complex structure J compatible with the symplectic form, there is no non-constant J-holomorphic entire curve f:C→X.