We use adiabatic limits to study foliated manifolds. The Bott connection naturally shows up as the adiabatic limit of Levi-Civita connections. As an application, we then construct certain natural elliptic operators associated to the foliation and present a direct geometric proof of a vanshing theorem of Connes [Co], which extends the Lichnerowicz vanishing theorem [L] to foliated manifolds with spin leaves, for what we call almost Riemannian foliations. Several new vanishing theorems are also proved by using our method.