Suppose that <i></i><sub>0</sub> is an unknotted simple closed curve contained in the 3-sphere which happens to be invariant under a subgroup <i>G</i> of the Mbius group of <i>S<sup>3</sup></i> = the group (generated by inversions in 2-spheres). It is shown that there is an equivariant isotopy <i></i><sub><i>t</i></sub>, 0 <i>t</i> 1, from <i></i><sub>0</sub> to a round circle <i></i><sub>1</sub>.