We prove an analogue of the Madsen–Weiss theorem for high-dimensional manifolds. In particular, we explicitly describe the ring of characteristic classes of smooth fibre bundles whose fibres are connected sums of$g$copies of$S$^{$n$}×$S$^{$n$}, in the limit $${g \to \infty}$$ . Rationally it is a polynomial ring in certain explicit generators, giving a high-dimensional analogue of Mumford’s conjecture.