We prove that every homomorphism $\mathcal{O}^{E}_{\zeta}\rightarrow\mathcal{O}^{F}_{\zeta}$ , with$E$and$F$Banach spaces and ζ∈ℂ^{$m$}, is induced by a $\mathop{\mathrm{Hom}}(E,F)$ -valued holomorphic germ, provided that 1≤$m$<∞. A similar structure theorem is obtained for the homomorphisms of type $\mathcal{O}^{E}_{\zeta}\rightarrow\mathcal{S}_{\zeta}$ , where $\mathcal{S}_{\zeta}$ is a stalk of a coherent sheaf of positive depth. We later extend these results to sheaf homomorphisms, obtaining a condition on coherent sheaves which guarantees the sheaf to be equipped with a unique analytic structure in the sense of Lempert–Patyi.