Numerical Analysis and Scientific Computing

[271] Convergence of Laplacian Spectra from Random Samples

Zuoqiang Shi Tsinghua University

Numerical Analysis and Scientific Computing mathscidoc:1709.25002

[ Download ] [ 2017-09-25 16:09:33 uploaded by shizqi ] [ 1129 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

[272] Convergence of discontinuous Galerkin schemes for front propagation with obstacles

Olivier Bokanowski Universite Denis-Diderot Paris 7 Yingda Cheng Michigan State University Chi-Wang Shu Brown University

Numerical Analysis and Scientific Computing mathscidoc:1610.25020

Mathematics of Computation, 85, 2131-2159, 2016
[ Download ] [ 2016-10-11 11:16:17 uploaded by chiwangshu ] [ 1129 downloads ] [ 0 comments ] [ Cited by 3 ] [ Abstract ] [ Full ]
Please log in for comment!
 

[273] Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics

Shenggao Zhou Soochow University R. G. Weiss ETH Zurich Li-Tien Cheng University of California, San Diego Joachim Dzubiella University of Freiburg J. Andrew McCammon University of California, San Diego Bo Li University of California, San Diego

Numerical Analysis and Scientific Computing Data Analysis, Bio-Statistics, Bio-Mathematics mathscidoc:2005.25001

Proceedings of the National Academy of Sciences of the United States of America, 116, (30), 14989–14994, 2019.7
[ Download ] [ 2020-05-22 17:28:54 uploaded by sgzhou ] [ 1127 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

[274] Positivity-preserving high-order schemes for conservation laws on arbitrarily distributed point clouds with a simple WENO limiter

Jie Du Tsinghua University Chi-Wang Shu Brown University

Numerical Analysis and Scientific Computing mathscidoc:1804.25019

International Journal of Numerical Analysis and Modeling, 15, 1-25, 2018
[ Download ] [ 2018-04-16 10:36:11 uploaded by chiwangshu ] [ 1126 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

[275] Maximum-principle-preserving local discontinuous Galerkin methods for Allen-Cahn equations,

Jie Du Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, China; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, 101408, China Eric Chung Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR, China Yang Yang Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, 49931, USA

Numerical Analysis and Scientific Computing mathscidoc:2205.25021

Communications on Applied Mathematics and Computation, 4, 353-379, 2022.4
[ Download ] [ 2022-05-20 15:36:14 uploaded by dujie ] [ 1124 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

Show all 3 5 10 25 papers per page.
Sort by time views
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved