We consider the solution of the large-scale nonsymmetric algebraic Riccati equation XCX − XD − AX + B = 0, with M ≡ [D,−C;−B,A] ∈ R(n1+n2)×(n1+n2) being a nonsingular M-matrix. In addition, A and D are sparselike, with the products A−1u, A−⊤u, D−1v, and D−⊤v computable in O(n) complexity (with n = max{n1, n2}), for some vectors u and v, and B, C are low ranked. The structure-preserving doubling algorithms (SDA) by Guo, Lin, and Xu [Numer. Math., 103 (2006), pp. 392–412] is adapted, with the appropriate applications of the Sherman–Morrison– Woodbury formula and the sparse-plus-low-rank representations of various iterates. The resulting large-scale doubling algorithm has an O(n) computational complexity and memory requirement per iteration and converges essentially quadratically. A detailed error analysis, on the effects of truncation of iterates with an explicit forward error bound for the approximate solution from the SDA, and some numerical results will be presented.