We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate the second-order cone complementarity problem (SOCCP) as a semismooth system of equations. Specifically, we characterize the B-subdifferential of the FB function at a general point and study the condition for every element of the B-subdifferential at a solution being nonsingular. In addition, for the induced FB merit function, we establish its coerciveness and provide a weaker condition than Chen and Tseng (Math. Program. 104:293327, 2005) for each stationary point to be a solution, under suitable Cartesian <i>P</i>-properties of the involved mapping. By this, a damped Gauss-Newton method is proposed, and the global and superlinear convergence results are obtained. Numerical results are reported for the second-order cone programs