We present the third in the series of papers describing Poisson properties of planar directed networks in the disk or in the annulus. In this paper we concentrate on special networks$N$_{$u,v$}in the disk that correspond to the choice of a pair ($u, v$) of Coxeter elements in the symmetric group$S$_{$n$}and the corresponding networks $N_{u,v}^\circ$ in the annulus. Boundary measurements for$N$_{$u,v$}represent elements of the Coxeter double Bruhat cell$G$^{$u,v$}⊂GL_{$n$}. The Cartan subgroup$H$acts on$G$^{$u,v$}by conjugation. The standard Poisson structure on the space of weights of$N$_{$u,v$}induces a Poisson structure on$G$^{$u,v$}, and hence on the quotient$G$^{$u,v$}/$H$, which makes the latter into the phase space for an appropriate Coxeter–Toda lattice. The boundary measurement for $N_{u,v}^\circ$ is a rational function that coincides up to a non-zero factor with the Weyl function for the boundary measurement for$N$_{$u,v$}. The corresponding Poisson bracket on the space of weights of $N_{u,v}^\circ$ induces a Poisson bracket on the certain space $ {\mathcal{R}_n} $ of rational functions, which appeared previously in the context of Toda flows.