Cryo-electron microscopy (cryo-EM) has recently emerged as a powerful
tool for obtaining three-dimensional (3D) structures of biological macromolecules
in native states. A minimum cryo-EM image data set for deriving a
meaningful reconstruction is comprised of thousands of randomly orientated
projections of identical particles photographed with a small number of electrons.
The computation of 3D structure from 2D projections requires clustering,
which aims to enhance the signal to noise ratio in each view by grouping
similarly oriented images. Nevertheless, the prevailing clustering techniques
are often compromised by three characteristics of cryo-EM data: high noise
content, high dimensionality and large number of clusters. Moreover, since
clustering requires registering images of similar orientation into the same
pixel coordinates by 2D alignment, it is desired that the clustering algorithm
can label misaligned images as outliers. Herein, we introduce a clustering algorithm
γ-SUP to model the data with a q-Gaussian mixture and adopt the
minimum γ-divergence for estimation, and then use a self-updating procedure
to obtain the numerical solution. We apply γ-SUP to the cryo-EM images
of two benchmark macromolecules, RNA polymerase II and ribosome.
In the former case, simulated images were chosen to decouple clustering from
alignment to demonstrate γ-SUP is more robust to misalignment outliers than
the existing clustering methods used in the cryo-EM community. In the latter
case, the clustering of real cryo-EM data by our γ-SUP method eliminates
noise in many views to reveal true structure features of ribosome at the projection
level.