We prove the Poincaré inequality for vector fields on the balls of the control distance by integrating along subunit paths. Our method requires that the balls are representable by means of suitable “controllable almost exponential maps”.
Ahern P R, Sarason D. TheH p spaces of a class of function algebras[J]. Acta Mathematica, 1967, 117(1): 123-163.
2
Suarez D. Trivial Gleason parts and the topological stable rank of H[J]. American Journal of Mathematics, 1996, 118(4): 879-904.
3
Lumer G. Analytic functions and Dirichlet problem[J]. Bulletin of the American Mathematical Society, 1964, 70(1): 98-104.
4
Gamelin T W. Embedding Riemann surfaces in maximal ideal spaces[J]. Journal of Functional Analysis, 1968, 2(2): 123-146.
5
David P Blecher · Louis E Labuschagne. Applications of the Fuglede-Kadison determinant: Szeg\"{o}'s theorem and outers for noncommutative $H^p$. 2008.
6
Brudnyi A. Banach-valued Holomorphic Functions on the Maximal Ideal Space of H^\\infty[J]. Inventiones Mathematicae, 2011, 193(1): 187-227.
7
Gamelin T W, Lumer G. Theory of abstract hardy spaces and the universal hardy class[J]. Advances in Mathematics, 1968, 2(2): 118-174.
8
Knig H. Zur abstrakten Theorie der analytischen Funktionen[J]. Mathematische Zeitschrift, 1965, 88(2): 136-165.
9
Blecher D P, Labuschagne L E. Logmodularity and isometries of operator algebras[J]. Transactions of the American Mathematical Society, 2003, 355(4): 1621-1646.
10
Luecking D H. The compact Hankel operators form an -ideal in the space of Hankel operators[J]. Proceedings of the American Mathematical Society, 1980, 79(2): 222-224.