Let (X, g) be a compact Riemannian manifold with quasi-positive Riemannian scalar curvature. If there exists a complex structure J compatible with g, then the Kodaira dimension of (X, J) is equal to −∞ and the canonical bundle KX is not pseudo-effective. We also introduce the complex Yamabe number λc(X) for compact complex manifold X, and show that if λ_c(X) is greater than 0, then κ(X) is equal to −∞; moreover, if X is also spin, then the Hirzebruch A-hat genus \hat{A}(X) is zero.