We address the registration problem of genus-one surfaces (such as vertebrae bones) with prescribed landmark constraints. The high-genus topology of the surfaces makes it challenging to obtain a unique and bijective surface mapping that matches landmarks consistently. This work proposes to tackle this registration problem using a special class of quasi-conformal maps called Teichmüller maps (T-Maps). A landmark constrained T-Map is the unique mapping between genus-1 surfaces that minimizes the maximal conformality distortion while matching the prescribed feature landmarks. Existence and uniqueness of the landmark constrained T-Map are theoretically guaranteed. This work presents an iterative algorithm to compute the T-Map. The main idea is to represent the set of diffeomorphism using the Beltrami coefficients (BC). The BC is iteratively adjusted to an optimal one, which corresponds to our desired T-Map that matches the prescribed landmarks and satisfies the periodic boundary condition on the universal covering space. Numerical experiments demonstrate the effectiveness of our proposed algorithm. The method has also been applied to register vertebrae bones with prescribed landmark points and curves, which gives accurate surface registrations.