The α-modulation spaces$M$^{$s$,α}_{$p$,$q$}($R$^{$d$}), α∈[0,1], form a family of spaces that contain the Besov and modulation spaces as special cases. In this paper we prove that a pseudodifferential operator σ($x$,$D$) with symbol in the Hörmander class$S$^{$b$}_{ρ,0}extends to a bounded operator σ($x$,$D$):$M$^{$s$,α}_{$p$,$q$}($R$^{$d$})→$M$^{$s$-$b$,α}_{$p$,$q$}($R$^{$d$}) provided 0≤α≤ρ≤1, and 1<$p$,$q$<∞. The result extends the well-known result that pseudodifferential operators with symbol in the class$S$^{$b$}_{1,0}maps the Besov space$B$^{$s$}_{$p$,$q$}($R$^{$d$}) into$B$^{$s$-$b$}_{$p$,$q$}($R$^{$d$}).