We introduce and analyze lower ($Ricci$) curvature bounds $ \underline{{Curv}} {\left( {M,d,m} \right)} $ ⩾$K$for metric measure spaces $ {\left( {M,d,m} \right)} $ . Our definition is based on convexity properties of the relative entropy $ Ent{\left( { \cdot \left| m \right.} \right)} $ regarded as a function on the$L$_{2}-Wasserstein space of probability measures on the metric space $ {\left( {M,d} \right)} $ . Among others, we show that $ \underline{{Curv}} {\left( {M,d,m} \right)} $ ⩾$K$implies estimates for the volume growth of concentric balls. For Riemannian manifolds, $ \underline{{Curv}} {\left( {M,d,m} \right)} $ ⩾$K$if and only if $ Ric_{M} {\left( {\xi ,\xi } \right)} $ ⩾$K$ $ {\left| \xi \right|}^{2} $ for all $ \xi \in TM $ .