We give a method for constructing transcendental entire functions with good control of both the singular values of$f$and the geometry of$f$. Among other applications, we construct a function$f$with bounded singular set, whose Fatou set contains a wandering domain.
Alberto EncisoInstituto de Ciencias Matemáticas, Consejo Superior de Investigaciones CientíficasDaniel Peralta-SalasInstituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas
We prove the existence of knotted and linked thin vortex tubes for steady solutions to the incompressible Euler equation in $${\mathbb{R}^{3}}$$ . More precisely, given a finite collection of (possibly linked and knotted) disjoint thin tubes in $${\mathbb{R}^{3}}$$ , we show that they can be transformed with a$C$^{$m$}-small diffeomorphism into a set of vortex tubes of a Beltrami field that tends to zero at infinity. The structure of the vortex lines in the tubes is extremely rich, presenting a positive-measure set of invariant tori and infinitely many periodic vortex lines. The problem of the existence of steady knotted thin vortex tubes can be traced back to Lord Kelvin.
This paper gives a new and direct construction of the multi-prime big de Rham–Witt complex, which is defined for every commutative and unital ring; the original construction by Madsen and myself relied on the adjoint functor theorem and accordingly was very indirect. The construction given here also corrects the 2-torsion which was not quite correct in the original version. The new construction is based on the theory of modules and derivations over a$λ$-ring which is developed first. The main result in this first part of the paper is that the universal derivation of a$λ$-ring is given by the universal derivation of the underlying ring together with an additional structure depending directly on the$λ$-ring structure in question. In the case of the ring of big Witt vectors, this additional structure gives rise to divided Frobenius operators on the module of Kähler differentials. It is the existence of these divided Frobenius operators that makes the new construction of the big de Rham–Witt complex possible. It is further shown that the big de Rham–Witt complex behaves well with respect to étale maps, and finally, the big de Rham–Witt complex of the ring of integers is explicitly evaluated.
David DrasinDepartment of Mathematics, Purdue UniversityPekka PankkaDepartment of Mathematics and Statistics, P.O. Box 68, (Gustaf Hällströmin katu 2b), University of Helsinki, Finland
We show that given $${n \geqslant 3}$$ , $${q \geqslant 1}$$ , and a finite set $${\{y_1, \ldots, y_q \}}$$ in $${\mathbb{R}^n}$$ there exists a quasiregular mapping $${\mathbb{R}^n\to \mathbb{R}^n}$$ omitting exactly points $${y_1, \ldots, y_q}$$ .
We prove that the radii of convergence of the solutions of a$p$-adic differential equation $${\fancyscript{F}}$$ over an affinoid domain$X$of the Berkovich affine line are continuous functions on$X$that factorize through the retraction of $${X\to\Gamma}$$ of$X$onto a finite graph $${\Gamma\subseteq X}$$ . We also prove their super-harmonicity properties. This finiteness result means that the behavior of the radii as functions on$X$is controlled by a$finite$family of data.
Jérôme PoineauLaboratoire de mathématiques Nicolas Oresme, Université de CaenAndrea PulitaDépartement de mathématiques, Université de Montpellier II, CC051
We study the variation of the convergence Newton polygon of a differential equation along a smooth Berkovich curve over a non-archimedean complete valued field of characteristic zero. Relying on work of the second author who investigated its properties on affinoid domains of the affine line, we prove that its slopes give rise to continuous functions that factorise by the retraction through a locally finite subgraph of the curve.