1
Van Doorn E A. QUASI-STATIONARY DISTRIBUTIONS AND CONVERGENCE TO QUASI-STATIONARITY OF BIRTH-DEATH PROCESSES[J]. Advances in Applied Probability, 1991, 23(4): 683-700.
2
Qian H, Kou S C. Statistics and Related Topics in Single-Molecule Biophysics[C]., 2014, 1(1): 465-492.
3
R L Tweedie. Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. 1975.
4
Keller M, Lenz D. Dirichlet forms and stochastic completeness of graphs and subgraphs[J]. Crelle\u0027s Journal, 2009, 2012(666): 189-223.
5
Letessier J, Valent G. Dual birth and death processes and orthogonal polynomials[J]. Siam Journal on Applied Mathematics, 1986, 46(3): 393-405.
6
Saaty T L. Time-Dependent Solution of the Many-Server Poisson Queue[J]. Operations Research, 1960, 8(6): 755-772.
7
Keller M, Lenz D. Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation[J]. Mathematical Modelling of Natural Phenomena, 2011, 5(4): 198-224.
8
Ismail M E, Letessier J, Valent G, et al. Linear birth and death models and associated Laguerre and Meixner polynomials[J]. Journal of Approximation Theory, 1988, 55(3): 337-348.
9
Tweedie R L. Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes[J]. Journal of Applied Probability, 1981, 18(01): 122-130.
10
Hanschke T. Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts[J]. Journal of Applied Probability, 1987, 24(2): 486-494.