In this paper, we develop third-order conservative sign-preserving and steady-state-preserving time integrations and seek their applications in multispecies and multireaction chemical reactive flows. In this problem, the density and pressure are nonnegative, and the mass fraction for the ith species, denoted as zi, 1<=i<=M, should be between 0 and 1, where M is the total number of species. There are four main difficulties in constructing high-order bound-preserving techniques for multispecies and multireaction detonations. First of all, most of the bound-preserving techniques available are based on Euler forward time integration. Therefore, for problems with stiff source, the time step will be significantly limited. Secondly, the mass fraction does not satisfy a maximum-principle and hence it is not easy to preserve the upper bound 1. Thirdly, in most of the
previous works for gaseous denotation, the algorithm relies on second-order Strang splitting methods where the
ux and stiff source terms can be solved separately, and the extension to high-order time discretization seems to be complicated. Finally, most of the previous ODE solvers for stiff problems cannot preserve the total mass and the positivity of the numerical approximations at the same time. In this paper, we will construct third-order conservative sign-preserving Rugne-Kutta
and multistep methods to overcome all these difficulties. The time integrations do not depend on the Strang splitting, i.e. we do not split the flux and the stiff source terms. Moreover, the time discretization can handle the stiff source with large time step and preserves the steady-state. Numerical experiments will be given to demonstrate the good performance of the bound-preserving
technique and the stability of the scheme for problems with stiff source terms.