In a uniform random recursive$k$-directed acyclic graph, there is a root, 0, and each node in turn, from 1 to$n$, chooses$k$uniform random parents from among the nodes of smaller index. If$S$_{$n$}is the shortest path distance from node$n$to the root, then we determine the constant$σ$such that$S$_{$n$}/log$n$→$σ$in probability as$n$→∞. We also show that max_{1≤$i$≤$n$}$S$_{$i$}/log$n$→$σ$in probability.