This is a continuation of our series of works for the inhomogeneous Boltzmann equation. We study qualitative properties of classical solutions; the full regularization in all variables, uniqueness, non-negativity and convergence rate to the equilibrium, to be precise. Together with the results of Parts I and II about the well-posedness of the Cauchy problem around the Maxwellian, we conclude this series with a satisfactory mathematical theory for the Boltzmann equation without angular cutoff.