Ricci ﬂow deformsthe Riemannian metric proportionallyto the curvature, such that the curvatureevolves accordingto a heat diffusion process and eventually becomes constant everywhere. Ricci ﬂow has demonstrated its great potential by solving various problems in many ﬁelds, which can be hardly handled by alternative methods so far. This work introduces the uniﬁed theoretic framework for discrete Surface Ricci Flow, including all the common schemes: Tangential Circle Packing, Thurston’s Circle Packing, Inversive Distance Circle Packing and Discrete Yamabe Flow. Furthermore, this work also introduces a novel schemes, Virtual Radius Circle Packing and the Mixed Type schemes, under the uniﬁed framework. This work gives explicit geometric interpretation to the discrete Ricci energies for all the schemes with all back ground geometries, and the corresponding Hessian matrices. The uniﬁed frame work deepens our understanding to the the discrete surface Ricci ﬂow theory, and has inspired us to discover the new schemes, improved the ﬂexibility and robustness of the algorithms, greatly simpliﬁed the implementation and improved the efﬁciency. Experimental results show the uniﬁed surface Ricci ﬂow algorithms can handle general surfaces with different topologies, and is robust to meshes with different qualities, and is effective for solving real problems.