We study groups of automorphisms and birational transformations of quasi-projective varieties. Two methods are combined; the first one is based on p-adic analysis, the second makes use of isoperimetric inequalities and Lang–Weil estimates. For instance, we show that, if SLn(Z) acts faithfully on a complex quasi-projective variety X by birational transformations, then dim(X)⩾n−1 and X is rational if dim(X)=n−1.