For a symmetrizable Kac-Moody Lie algebra $\mathfrak{g}$, Lusztig introduced the corresponding modified quantized enveloping algebra $\dot{\textbf{U}}$ and its canonical basis $\dot{\textbf{B}}$ in [13]. In this paper, in case $\mathfrak{g}$ is a symmetric Kac-Moody Lie algebra of finite or affine type, we define a set $\tilde{\mathcal{M}}$ which depends only on the root category $\mathcal{R}$ and prove that there is a bijection between $\tilde{\mathcal{M}}$ and $\dot{\textbf{B}}$, where $\mathcal{R}$ is the $T^2$-orbit category of the bounded derived category of corresponding Dynkin or tame quiver. Our method is based on a result of Lin, Xiao and Zhang in [10], which gives a PBW-type basis of $\textbf{U}^+$.