1
Chu C, Hsu A, Chou K, et al. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images[J]. NeuroImage, 2012, 60(1): 59-70.
2
Jedynak B, Lang A, Liu B, et al. A Computational Neurodegenerative Disease Progression Score: Method and Results with the Alzheimer’s Disease Neuroimaging Initiative Cohort[J]. NeuroImage, 2012, 63(3): 1478-1486.
3
Long D, Wang J, Xuan M, et al. Automatic Classification of Early Parkinson\u0027s Disease with Multi-Modal MR Imaging[J]. PLOS ONE, 2012, 7(11).
4
Dubey R, Zhou J, Wang Y, et al. Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study[J]. NeuroImage, 2014: 220-241.
5
Meredith N Braskie · Paul M Thompson. A focus on structural brain imaging in the Alzheimer's disease neuroimaging initiative.. 2014.
6
Lin A, Laird A R, Fox P T, et al. Multimodal MRI Neuroimaging Biomarkers for Cognitive Normal Adults, Amnestic Mild Cognitive Impairment, and Alzheimer\u0027s Disease[J]. Neurology Research International, 2012: 907409-907409.
7
Duff E P, Trachtenberg A J, Mackay C E, et al. Task-driven ICA feature generation for accurate and interpretable prediction using fMRI.[J]. NeuroImage, 2012, 60(1): 189-203.
8
Gupta A, Ayhan M S, Maida A S, et al. Natural Image Bases to Represent Neuroimaging Data[C]. international conference on machine learning, 2013: 987-994.
9
Arbabshirani M R, Plis S M, Sui J, et al. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.[J]. NeuroImage, 2016.
10
Chen Y, Pham T D. Development of a brain MRI-based hidden Markov model for dementia recognition.[J]. Biomedical Engineering Online, 2013, 12(1): 1-16.