In this paper, we present a generalized Toeplitz determinant solution for the generalized Schur flow and propose a mixed form of the two known relativistic Toda chains together with its generalized Toeplitz determinant solution. In addition, we also give a Hankel type determinant solution for a nonisospectral Toda lattice. All these results are obtained by technical determinant operations. As a bonus, we finally obtain some new combinatorial numbers based on the moment relations with respect to these semi-discrete integrable systems and give the corresponding combinatorial interpretations by means of the lattice paths.